If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9k^2+48k=0
a = 9; b = 48; c = 0;
Δ = b2-4ac
Δ = 482-4·9·0
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-48}{2*9}=\frac{-96}{18} =-5+1/3 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+48}{2*9}=\frac{0}{18} =0 $
| -22x/(873-22x)=1 | | 7x+9=8×+2 | | -9(k-17=-54 | | x-x/10=31500 | | x-x/10=8820 | | 9(2+u)=9(u+2) | | x-x/10=97051 | | x-x/10=23526 | | x-x/10=43738 | | 3+2x+4=6 | | 53.95=x+.11 | | X=x^2-3x-10 | | S=80t-27/4t^2 | | x-x/10=93333 | | x=68/4x | | 2.3x+1.7=13.2 | | 4x-5=16+9x | | x-x/10=25000 | | 20+5x=90 | | 8/5x-8=2x | | 8x+12=6-2x | | x-x/10=145620 | | 8/5h=2h+8 | | (√256+x)^2=576 | | x-x/10=32760 | | |5x-3|=|7x-4| | | x-x/10=100000 | | 28/41=10.5/x | | x-x/10=19165 | | -x+5.93=1.8 | | 8(-5+x)=-8(9x+4) | | x-x/10=14468 |